/*----------------------------*/ MSIAD - ISCTE, Mestrado em Sistemas Integrados de Apoio à Decisão: abril 2021

Siga-nos no Facebook

Energy Consumption Forecasting – A Proposed Framework

 Hugo Miguel Nogueira Mende

A Dissertation presented in partial fulfilment of the requirements of
the Degree of Master in Integrated Business Intelligence Systems

September, 2020

------------------------------------

Tese em MSIAD, classificada com 19 valores

------------------------------------

Abstract

With the development of underdeveloped countries and the digitization of societies, energy consumption is expected to continue to show high growth in the coming decades. While there is still a strong focus on fossil fuels for energy generation, the implementation of energy policies is crucial to gradually shift to renewable sources and the consequent reduction in CO2 emissions. Buildings are currently the sector that consumes the most energy. To contribute for a better energy consumption efficiency, it was proposed a framework, to be applied to buildings or households, to allow users to know their energy consumption and the possibility to forecast it. Different data analysis techniques for time series were used to provide information to the user about their energy consumption as well as to validate important data characteristics, namely stationarity and the existence of seasonality, which can have an impact in the forecasting models. For the definition of the forecasting models, state of the art was done to identify used models for energy consumption forecasting, and three models were tested for both types of data, univariate and multivariate. For the univariate data, the tested models were SARIMA, Holt-Winters and LSTM as for the multivariate data, SARIMA with exogenous variables, Support Vector Regression and LSTM. After the first execution of each model, hyperparameter tuning was done to conclude on the improvement of the results and the robustness of the models for later application to the framework.


Keywords: energy consumption, forecasting, framework, data analysis

Ler mais aqui.

  

Candidatar a MSIAD aqui.

 



eWOM para instituições públicas: aplicação ao caso do Exército Português

 Joana de Azinhaes Horta

Dissertação submetida como requisito parcial para obtenção do grau de Mestre em Sistemas Integrados de Apoio à Decisão

11 de Julho de 2020

------------------------------------

Tese em MSIAD, classificada com 19 valores

------------------------------------

Resumo

O crescimento das plataformas de social media veio facilitar o acesso à opinião pública acerca de diversos serviços e produtos. A recolha e análise dessa informação sobre as opiniões que os utilizadores partilham online (denominado electronic Word-of-Mouth), permite extrair conhecimento sobre a reputação das organizações. Embora esta reputação já seja monitorizada no setor privado, considera-se que a sua implementação no setor público poderá trazer benefícios no apoio à tomada de decisão sobre as políticas de governação institucionais, mas também na promoção de estratégias de marketing que beneficiem a sua imagem de utilidade pública e imagem de empregador. Para responder à necessidade existente, o presente estudo teve como objetivo desenvolver uma metodologia que extraia informação relevante sobre o eWOM em social media, usando estratégias de text mining e processamento de língua natural. Esta metodologia foi aplicada no caso do Exército Português e revelou potencialidade para distinguir a polaridade de sentimentos em comentários, encontrar os principais tópicos emergentes e fornecer informação sobre a reputação institucional. De acordo com os resultados obtidos, foram propostas recomendações, potencialidades e limitações.


Keywords: eWOM Social Media Reputação Sector público

Ler mais aqui.

  

Candidatar a MSIAD aqui.

 


Construction of a disaster-support dynamic knowledge chatbot

 João Miguel Baptista Boné

Master’s in Integrated Business Intelligence Systems

October, 2020

------------------------------------

Tese em MSIAD, classificada com 20 valores

------------------------------------

Abstract

This dissertation is aimed at devising a disaster-support chatbot system with the capacity to enhance citizens and first responders’ resilience in disaster scenarios, by gathering and processing information from crowd-sensing sources, and informing its users with relevant knowledge about detected disasters, and how to deal with them.
This system is composed of two artifacts that interact via a mediator graph-structured knowledge base. Our first artifact is a crowd-sourced disaster-related knowledge extraction system, which uses social media as a means to exploit humans behaving as sensors. It consists in a pipeline of natural language processing (NLP) tools, and a mixture of convolutional neural networks (CNNs) and lexicon-based models for classifying and extracting disasters. It then outputs the extracted information to the knowledge graph (KG), for presenting connected insights. The second artifact, the disaster-support chatbot, uses a state-of-the-art Dual Intent Entity Transformer (DIET) architecture to classify user intents, and makes use of several dialogue policies for managing user conversations, as well as storing relevant information to be used in further dialogue turns. To generate responses, the chatbot uses local and official disaster-related knowledge, and infers the knowledge graph for dynamic knowledge extracted by the first artifact.
According to the achieved results, our devised system is on par with the state-ofthe-art on Disaster Extraction systems. Both artifacts have also been validated by field specialists, who have considered them to be valuable assets in disaster-management.


Keywords: Disaster-Management, Natural Language Processing, Artificial Intelligence, Machine Learning, Chatbots, Graph Databases 

Ler mais aqui.

1º artigo produzido no âmbito desta tese:

DisKnow: A Social-Driven Disaster Support Knowledge Extraction System

 2º artigo produzido no âmbito desta tese: 

DisBot: A Portuguese Disaster Support Dynamic Knowledge Chatbot

  

Candidatar a MSIAD aqui.